
Certified CNF Translations1

for Pseudo-Boolean Solving2

Stephan Gocht £3

Lund University, Lund, Sweden4

University of Copenhagen, Copenhagen, Denmark5

Ruben Martins £6

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA7

Jakob Nordström £8

University of Copenhagen, Copenhagen, Denmark9

Lund University, Lund, Sweden10

Andy Oertel £11

Lund University, Lund, Sweden12

University of Copenhagen, Copenhagen, Denmark13

Abstract14

The dramatic improvements in Boolean satisfiability (SAT) solving since the turn of the millennium15

have made it possible to leverage state-of-the-art conflict-driven clause learning (CDCL) solvers for16

many combinatorial problems in academia and industry, and the use of proof logging has played a17

crucial role in increasing the confidence that the results these solvers produce are correct. However,18

the conjunctive normal form (CNF) format used for SAT proof logging means that it has not19

been possible to extend guarantees of correctness to the use of SAT solvers for more expressive20

combinatorial paradigms, where the first step is to translate the input to CNF.21

In this work, we show how cutting-planes-based reasoning can provide proof logging for solvers22

that translate pseudo-Boolean (a.k.a. 0-1 integer linear) decision problems to CNF and then run23

CDCL. To support a wide range of encodings, we provide a uniform and easily extensible framework24

for proof logging of CNF translations. We are hopeful that this is just a first step towards providing25

a unified proof logging approach that will also extend to maximum satisfiability (MaxSAT) solving26

and pseudo-Boolean optimization in general.27

2012 ACM Subject Classification Theory of computation → Program verification; Hardware →28

Theorem proving and SAT solving; Theory of computation → Logic and verification29

Keywords and phrases pseudo-Boolean solving, 0-1 integer linear program, proof logging, certified30

translation, CNF encoding, cutting planes31

Digital Object Identifier 10.4230/LIPIcs...32

Funding Stephan Gocht: Swedish Research Council grant 2016-00782.33

Ruben Martins: National Science Foundation award CCF-1762363 and Amazon Research Award.34

Jakob Nordström: Swedish Research Council grant 2016-00782 and Independent Research Fund35

Denmark grant 9040-00389B.36

Andy Oertel: Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the37

Knut and Alice Wallenberg Foundation.38

1 Introduction39

Boolean satisfiability (SAT) has witnessed striking improvements over the last couple of40

decades, starting with the introduction of conflict-driven clause learning (CDCL) SAT41

solvers [36, 39], and this has lead to a wide range of applications including large-scale42

problems in both academia and industry [8]. The conflict-driven paradigm has also been43

© Stephan Gocht, Ruben Martins, Jakob Nordström and Andy Oertel;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephan.gocht@cs.lth.se
https://orcid.org/0000-0002-5459-3134
mailto:rubenm@andrew.cmu.edu
https://orcid.org/0000-0003-1525-1382
mailto:jn@di.ku.dk
https://orcid.org/0000-0002-2700-4285
mailto:andy.oertel@cs.lth.se
https://orcid.org/0000-0001-9783-6768
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Certified CNF Translations for Pseudo-Boolean Solving

Figure 1 Proof logging workflow for pseudo-Boolean solving (our contribution in boldface).

successfully exported to other areas such as maximum satisfiability (MaxSAT), pseudo-44

Boolean (PB) solving, constraint programming (CP), and mixed integer linear programming45

(MIP). As modern combinatorial solvers are used to attack ever more challenging problems,46

and employ ever more sophisticated optimizations and heuristics to do so, the question47

arises whether we can trust the results they produce. Sadly, it is well documented that48

state-of-the-art CP and MIP solvers can return incorrect solutions [1, 14, 24]. For SAT49

solvers, however, analogous problems [9] have been successfully addressed by the introduction50

of proof logging, requiring that solvers should be certifying [37] in the sense that they output51

machine-verifiable proofs of their claims that can be verified by a stand-alone proof checker.52

A number of different proof logging formats have been developed for SAT, including53

RUP [28], TraceCheck [7], DRAT [29, 30, 50], GRIT [16], and LRAT [15], and since 2013 the54

SAT competitions [45] require solvers to be certifying, with DRAT established as the standard55

format. It would be highly desirable to have such proof logging also for stronger combinatorial56

solving paradigms, but while methods such as DRAT are extremely powerful in theory, the57

fact that they are limited to a clausal format makes it hard to capture more advanced forms58

of reasoning in a succinct way, and it is not even clear how to deal with input that is not in59

conjunctive normal form (CNF). One way to address this problem could be to allow extensions60

to the DRAT format [2], but another approach pursued in recent years is to develop stronger61

proof logging methods based on binary decision diagrams [4], algebraic reasoning [33, 44],62

pseudo-Boolean reasoning [21, 25, 26], or integer linear programming [12, 19].63

Our Contribution In this work, we consider the use of CDCL for pseudo-Boolean64

solving, where the pseudo-Boolean input (i.e., a 0-1 integer linear program) is translated65

to CNF and passed to a SAT solver, as pioneered in MiniSat+ [18]. The two solvers66

Open-WBO [41] and NaPS [40] using this approach were among the top performers67

in the latest pseudo-Boolean evaluation [43]. While DRAT proof logging can be used68

to certify unsatisfiability of the translated formula, it cannot prove the correctness of69

the translation, not only since there is no known method of carrying out PB reasoning70

efficiently in DRAT (except for constraints with small coefficients [10]), but also, and71

more fundamentally, because the input is not in CNF.72

We demonstrate how to instead use the cutting planes method [13], enhanced with a73

rule allowing to introduce extension variables [27], to certify the correctness of translations74

of pseudo-Boolean constraints into CNF. Since this method is a strict extension of DRAT ,75

we can combine the proof of the translation with the SAT solver DRAT proof log (with76

appropriate syntactic modifications) to achieve end-to-end verification of the pseudo-77

Boolean solving process using the proof checker VeriPB [48], as shown in Figure 1.78

One challenge when certifying PB-to-CNF translations is that there are many different79

ways of encoding pseudo-Boolean constraints into CNF (as catalogued in, e.g., [42]), and80

it is time-consuming (and error-prone) to code up proof logging for every single encoding.81

However, many of the encodings can be understood as first designing a circuit to evaluate82

whether the PB constraint is satisfied, and then writing down a CNF encoding of the83

S. Gocht, R. Martins, J. Nordström and A. Oertel XX:3

computation of this circuit. An important part of our contribution is that we develop a84

general framework to provide proof logging for a wide class of such circuits in a uniform85

way. The pseudo-Boolean format used for proof logging makes it easy to derive 0-1 linear86

inequalities describing the computations in the circuit, and once this has been done the87

desired clauses in the CNF translation can simply be obtained by so-called reverse unit88

propagation (RUP) [28, 47]. We have applied this method to the sequential counter [46],89

totalizer [3], generalized totalizer [32] and adder network [18, 49] encodings, and report90

results from an empirical evaluation.91

Outline of This Paper After discussing preliminaries in Section 2, we illustrate our92

method for the sequential counter encoding in Section 3. Section 4 presents the general93

framework, and we briefly discuss how to apply it to adder networks in Section 5. (Due94

to space constraints, details for the totalizer and generalized totalizer encodings are95

omitted.) We report experimental data for proof logging and verification in Section 6 and96

conclude with a discussion of some possible directions for future research in Section 7.97

2 Preliminaries98

Let us start with a review of some standard material that can also be found in, e.g.,99

[27] or in more detail in [11]. A literal ℓ over a Boolean variable x is x itself or its100

negation x = 1− x, where variables can be assigned values 0 (false) or 1 (true). For101

notational convenience, we define x
.= x (where we use .= to denote syntactic equality).102

We sometimes write x⃗ = {x1, . . . , xm } to denote a set of variables. A pseudo-Boolean103

(PB) constraint is a 0-1 linear inequality104

C
.=

∑
iaiℓi ≥ A , (1)105

which without loss of generality we always assume to be in normalized form [5]; i.e., all106

literals ℓi are over distinct variables and the coefficients ai and the degree (of falsity) A107

are non-negative integers. The normalized form of the negation of C in (1) is108

¬C
.=

∑
iaiℓi ≥

∑
iai −A + 1 . (2)109

An equality constraint C
.=

∑
iaiℓi = A is just syntactic sugar for the pair of inequalities110

Cgeq .=
∑

iaiℓi ≥ A and C leq .=
∑

i−aiℓi ≥ −A (rewritten in normalized form). Summing111

two equality constraints C + D means taking the two sums Cgeq + Dgeq and C leq + Dleq.112

We write
∑

iaiℓi ▷◁ A for ▷◁∈ {≥,≤, = } for constraints that are either inequalities or113

equalities. A pseudo-Boolean formula is a conjunction F
.=

∧
j Cj of PB constraints.114

Note that a clause ℓ1 ∨ · · · ∨ ℓk is equivalent to the constraint ℓ1 + · · ·+ ℓk ≥ 1, so CNF115

formulas are just special cases of PB formulas. A cardinality constraint is a PB constraint116

with all coefficients equal to 1.117

A (partial) assignment ρ is a (partial) function from variables to { 0, 1 }. Applying ρ118

to a constraint C as in (1), denoted C↾ρ, yields the constraint obtained by substituting119

values for all assigned variables, shifting constants to the right-hand side, and adjusting120

the degree appropriately, and for a formula F we define F↾ρ
.=

∧
j Cj↾ρ. The constraint C121

is satisfied by ρ if
∑

ρ(ℓi)=1 ai ≥ A (or, equivalently, if the restricted constraint has a122

non-positive degree and is thus trivial). An assignment ρ satisfies F
.=

∧
j Cj if it123

satisfies all Cj , in which case F is satisfiable. A formula without satisfying assignments124

is unsatisfiable. Two formulas are equisatisfiable if they are both satisfiable or both125

unsatisfiable.126

XX:4 Certified CNF Translations for Pseudo-Boolean Solving

Cutting planes as defined in [13] is a method for iteratively deriving new constraints C127

implied by a PB formula F . If C and D are previously derived constraints, or are axiom128

constraints in F , then any positive integer linear combination of these constraints can129

be added. We can also add literal axioms ℓi ≥ 0 at any time. Finally, from a constraint130

in normalized form
∑

i ai · ℓi ≥ A we can use division by a positive integer d to derive131 ∑
i ⌈ai/d⌉ℓi ≥ ⌈A/d⌉, dividing and rounding up the degree and coefficients.132

For PB formulas F , F ′ and constraints C, C ′, we say that F implies or models C,133

denoted F |= C, if any assignment satisfying F must also satisfy C, and we write F |= F ′
134

if F |= C ′ for all C ′ ∈ F ′. It is clear that any collection of constraints F ′ derived135

(iteratively) from F by cutting planes are implied in this sense.136

A constraint C is said to unit propagate the literal ℓ under ρ if C↾ρ cannot be satisfied137

unless ℓ is satisfied. During unit propagation on F under ρ, we extend ρ iteratively by138

assignments to any propagated literals until an assignment ρ′ is reached under which139

no constraint C ∈ F is propagating, or under which some constraint C propagates a140

literal that has already been assigned to the opposite value. The latter scenario is called141

a conflict, since ρ′ violates the constraint C in this case. We say that F implies C by142

reverse unit propagation (RUP), and that C is a RUP constraint with respect to F , if F143

and the negation of C unit propagates to conflict under the empty assignment. It is not144

hard to see that F |= C holds if C is a RUP constraint.145

In addition to deriving constraints C that are implied by F , we will also need a rule146

for adding so-called redundant constraints D having the property that F and F ∧D are147

equisatisfiable. For this purpose we will use the reification rules described below, which148

are shown in [27] to be special cases of the redundance rule in that paper. Provided that149

z is a fresh variable that is not in the formula and has not appeared previously in the150

derivation, we can introduce the reified constraints151

z ⇒
∑

iaiℓi ≥ A
.= Az +

∑
iaiℓi ≥ A (3a)152

and153

z ⇐
∑

iaiℓi ≥ A
.=

(∑
iai −A + 1

)
· z +

∑
iaiℓi ≥

∑
iai −A + 1 . (3b)154

A moment of thought reveals that the constraint (3a) says that if z is true, then155 ∑
iaiℓi ≥ A has to hold, and this explains the notation z ⇒

∑
i aiℓi ≥ A introduced for156

this constraint. In an analogous fashion, the constraint (3b) says that if
∑

iaiℓi ≥ A157

holds, then z has to be true. We will write z ⇔
∑

i aiℓi ≥ A for the conjunction of (3a)158

and (3b). It is easy to see that adding such reification constraints to a formula F159

preserves equisatisfiability, since any satisfying assignment to F can be extended by160

setting z as required to satisfy the implications.161

3 Certified Translation for the Sequential Counter Encoding162

To encode a cardinality constraint of the form
∑n

i=1 ℓi ▷◁ k we can use the sequential163

counter encoding [46]. This encoding is designed after a circuit accumulating the sum164

of input bits using the intermediate fresh variables si,j for i ∈ [n] , j ∈ [i], where si,j is165

true if and only if the first i literals sum up to j. The variable si,j is computed as in166

Figure 2a, i.e.,167

si,j ↔ ((ℓi ∧ si−1,j−1) ∨ si−1,j) , (4)168

S. Gocht, R. Martins, J. Nordström and A. Oertel XX:5

si−1,j

si−1,j−1

li

si,j

&

≥ 1

(a) Logic circuit of a single compo-
nent. (b) Circuit for 4 input literals counting up to 4.

Figure 2 Circuit representation of the sequential counter encoding.

that is either the first i− 1 variables add up to j − 1 and the i-th literal is true, or the169

first i− 1 variables already add up to j. The resulting circuit is shown in Figure 2b and170

can be divided into multiple blocks, where the i-th block accumulates the i-th input171

literal and the variables si−1,j for j ∈ [i− 1]. We will use this block structure later as172

an abstract way to represent the encoding. The clausal encoding is given by translating173

the circuit into clausal form, i.e., via the clauses174

ℓi + si−1,j−1 + si,j ≥ 1 (5a)175

si−1,j + si,j ≥ 1 (5b)176

ℓi + si−1,j + si,j ≥ 1 (5c)177

si−1,j−1 + si,j ≥ 1 , (5d)178
179

where i ∈ [n] and j ∈ [i]. To cover corner cases we always replace si,j for j > i with 0180

and si,j for j ≤ 0 with 1 and simplify the constraints accordingly. For example, for181

i = j = 1 we only get the clauses ℓ1 + s1,1 ≥ 1 and ℓ1 + s1,1 ≥ 1, since s0,0 is replaced by182

1 and hence the variable disappears from (5a) while (5d) is satisfied, and s0,1 is replaced183

by 0 and thus disappears from (5c) and satisfies (5b). To enforce a greater-or-equal-k184

constraint it is only necessary to add the clause sn,k ≥ 1. Analogously, a less-or-equal-k185

constraint is enforced using the clause sn,k+1 ≥ 1. A common optimization, known as186

k-simplification, is to not add the clauses for variable si,j if j > k + 1, as these variables187

have no influence on the satisfiability of the clausal encoding.188

Before discussing the proof logging, let us study the encoding in more detail, ignoring189

k-simplification for now. Remember that the variable si,j should be true if and only if190

the first i literals sum up to j and hence can be understood as a unary representation,191

where we want that
∑i

j=1 ℓj =
∑i

j=1 si,j for i ∈ [n]. However, the circuit is only using192

the variables from the previous block si−1,j and the literal ℓi as input to compute the193

si,j variables and hence it will instead be more convenient to consider the equality194

ℓi +
∑i−1

j=1si−1,j =
∑i

j=1si,j i ∈ [n] . (6)195
196

We can use this insight to get a more abstract representation of the circuit in Figure 2b,197

by thinking of blocks as nodes with two input edges labelled ℓi and
∑i−1

j=1 si−1,j and an198

output edge labelled
∑i

j=1 si,j as shown in Figure 3a. Additionally, for each inner node199

XX:6 Certified CNF Translations for Pseudo-Boolean Solving

(a) Graph without k-simplification.

(b) Graph with k-simplification for k = 1.

Figure 3 Graph representation of the sequential counter encoding.

the sum of all input labels should be equal to the sum of all output labels as enforced by200

(6), which we will call a preserving equality. This graph representation will be helpful to201

generalize the presented proof logging approach for other encodings.202

Note that the sum of input variables coming from the source equals the sum of203

output variables on the edges going to the sink because each node preserves equality204

between incoming and outgoing values. That is we have
∑n

j=1ℓi =
∑n

j=1sn,j , which can205

also be obtained mathematically by summing all equalities of the form (6). Based on206

this equality, it is clear that a bound on the input variables k ▷◁
∑n

j=1ℓi also implies207

a bound on the output variables, which can be seen by summing k ▷◁
∑n

j=1ℓi and208 ∑n
j=1ℓi =

∑n
j=1sn,j to get209

k ▷◁
∑n

j=1sn,j . (7)210
211

Another important observation is that the variables si,j should not just take any212

value satisfying (6), but they should also be ordered, that is if si,j+1 is true, the sum213

should be at least j + 1 and hence also at least j and si,j should be true as well (and214

also si,j−1 = 1, si,j−2 = 1 etc.). This can be enforced with ordering constraints215

si,j ≥ si,j+1 i ∈ [n] , j ∈ [i− 1] . (8)216
217

With this improved understanding of the encoding, we can now tackle the task of218

proof logging, which becomes surprisingly simple. The constraints (6), (7), (8) are all219

pseudo-Boolean constraints and if we are able to derive them, then the clauses of the220

sequential counter encoding ((5) and sn,k+1 ≥ 1 and/or sn,k ≥ 1) can all be derived via221

reverse unit propagation: The propagations due to (8) will cause enough variables to222

propagate, such that (6) is falsified. The derivation of (7) from (6) was already discussed223

when introducing (7), where we summed all constraints (6) and the constraint to be224

encoded. This summation can be expressed directly in cutting planes. For deriving the225

other constraints, remember that for proof logging we want to demonstrate that adding226

constraints does not change satisfiability. However, it is easy to see that the preserving227

equality (6) and ordering constraints (8) can always be satisfied by choosing a suitable228

value for the si,j variables. If the constraints are added in ascending order of i, then229

the si,j are fresh and can indeed be chosen freely. In the proof format this reasoning is230

S. Gocht, R. Martins, J. Nordström and A. Oertel XX:7

expressed through reification as discussed in the next example and for the general case231

in Appendix A.1.232

▶ Example 1. Let us consider how to derive the preserving equality233

ℓ3 + s2,1 + s2,2 = s3,1 + s3,2 + s3,3 (9)234

for Block 3 in Figure 3a. To satisfy (9) we want that s3,1 is true if ℓ3 +s2,1 +s2,2 is greater235

equal 1, s3,2 is true if it is greater equal 2 and s3,3 is true if it is greater equal 3. We can236

enforce these conditions by introducing the fresh variables s3,1, s3,2, s3,3 via reification,237

i.e., s3,1 ⇔ ℓ3 + s2,1 + s2,2 ≥ 1, s3,2 ⇔ ℓ3 + s2,1 + s2,2 ≥ 2 and s3,3 ⇔ ℓ3 + s2,1 + s2,2 ≥ 3,238

which results in the pseudo-Boolean constraints239

s3,1 + ℓ3 + s2,1 + s2,2 ≥ 1 (10a)240

2s3,2 + ℓ3 + s2,1 + s2,2 ≥ 2 (10b)241

3s3,3 + ℓ3 + s2,1 + s2,2 ≥ 3 (10c)242

3s3,1 + ℓ3 + s2,1 + s2,2 ≥ 3 (10d)243

2s3,2 + ℓ3 + s2,1 + s2,2 ≥ 2 (10e)244

s3,3 + ℓ3 + s2,1 + s2,2 ≥ 1 . (10f)245
246

By design, (10) implies (9) and hence (9) can be derived via cutting planes. To do so247

in practice, we accumulate the constraints (10a)-(10c) while maintaining the invariant248 ∑i
j=1 s3,j +ℓ3 +s2,1 +s2,2 ≥ i, where i = 1, 2, 3 is the number of accumulated constraints.249

When starting with (10a) the invariant holds. Next we add (10b) and divide by 2 to250

obtain s3,1 + s3,2 + ℓ3 + s2,1 + s2,2 ≥ 2 and continue by multiplying with 2, adding251

(10c) and dividing by 3, which results in s3,1 + s3,2 + s3,3 + ℓ3 + s2,1 + s2,2 ≥ 3, which252

is equivalent to ℓ3 + s2,1 + s2,2 ≥ s3,1 + s3,2 + s3,3, as desired. Analogously, we can253

accumulate (10d)-(10f) in reverse order to obtain ℓ3 + s2,1 + s2,2 ≤ s3,1 + s3,2 + s3,3. The254

ordering constraints s3,1 ≥ s3,2 can be obtained by adding (10d) and (10b), which yields255

3s3,1 + 2s3,2 ≥ 1 and can be divided by 3 to obtain s3,1 + s3,2 ≥ 1, which is equivalent to256

s3,1 ≥ s3,2, as desired. Analogously, we can obtain s3,2 ≥ s3,3 by using (10e) and (10c).257

To perform k-simplification, we could simply omit deriving the unneeded clauses,258

however this potentially introduces a large overhead for proof logging if k is small, as we259

would always introduce O(n2) intermediate variables instead of the O(kn) variables that260

are needed. To avoid this overhead, as demonstrated in Figure 3b, we want that the261

edge going to the next block is labelled with
∑k+1

j=1 si,j instead of
∑i

j=1 si,j . However,262

this means we need to introduce an additional edge going directly to the sink with the263

label si,k+2 to preserve the equality of in- and output, i.e.,264

ℓi +
∑k+1

j=1si−1,j =
∑k+2

j=1si,j i ∈ [n] . (11)265
266

Note that without the additional variable si,k+2 we could not guarantee equality, as we267

would have k + 2 literals on the left hand side and only k + 1 fresh variable on the right268

hand side.269

▶ Example 2. To demonstrate k-simplification, consider Block 3 in Figure 3b, which270

has input edges with labels s2,1 + s2,2 and ℓ3 and let us perform 1-simplification. The271

output of Block 3 to Block 4 should only contain the 2 variables s3,1 + s3,2. To preserve272

equality of in- and output, we add an edge from Block 3 to the sink labelled s3,3.273

XX:8 Certified CNF Translations for Pseudo-Boolean Solving

As before, we can obtain the constraint that in- and output of the graph274

are equal by summing the preserving constraint (11) of each node, which yields275 ∑n
i=1

(
ℓi +

∑k+1
j=1 si−1,j

)
=

∑n
i=1

(∑k+2
j=1 si,j

)
and can be simplified to

∑n
i=1 ℓi =276 ∑n

i=1 si,k+2 +
∑k+1

j=1 sn,j .277

4 General Framework for Certifying CNF Translations278

A major challenge of providing proof logging for translations of pseudo-Boolean con-279

straints to CNF is that there are so many different encodings of pseudo-Boolean con-280

straints. To support a wide range of encodings, we can generalize the idea of the graph281

representation used in the previous section to obtain a general framework. The main282

ingredient of the framework is a graph representing the connection between the variables283

of the encoded constraint and auxiliary variables used in the encoding. This graph has284

the property that we can derive a preserving equality of in- and output for each node and285

that the CNF encoding follows from these equalities. To derive the preserving equality,286

we provide proof logging for general purpose operations for different ways to represent287

natural numbers. Let us start with a formal definition of the graph representation.288

▶ Definition 3 (Arithmetic Graph). An arithmetic graph with input
∑

i aixi and output289 ∑
i cioi is a directed graph G = (V, E) with a source node s, a sink node t, and edge labels290

of the form
∑

ib
e
i ye

i for each edge e ∈ E. For convenience, we allow to have multiple291

edges between two nodes. Additionally, we require that292

the source s has only outgoing edges and the input is split among edges of s, i.e.,293 ∑
i aixi ≡

∑
(s,v)=e∈E

∑
ib

e
i ye

i ,294

the sink t has only incoming edges and the output is split among edges of t, i.e.,295 ∑
i cioi ≡

∑
(v,t)=e∈E

∑
ib

e
i ye

i , and296

for every inner node v the input is equal to the output, which can be derived via proof297

logging, i.e., we can derive the preserving equality298 ∑
(u,v)=e∈E

∑
ib

e
i ye

i =
∑

(v,u)=e∈E

∑
ib

e
i ye

i . (12)299

The general strategy for providing proof logging will be to formulate the used encoding300

in terms of an arithmetic graph, where the preserving equality (12) will depend on the301

representation of natural numbers used in the encoding and will be derived using one302

of the operations described later in this section. For each encoding, we will make sure303

that the clauses in the encoding directly correspond to a node in the graph and will304

follow by reverse unit propagation from the preserving equality (12). However, each305

encoding has also clauses to restrict the output variables oi, which can only be derived306

after translating the bound known on the input variables to a bound on the output307

variables.308

▶ Proposition 4. Given an arithmetic graph with input
∑

i aixi and output
∑

i cioi and a309

pseudo-Boolean constraint
∑

i aixi ▷◁ k, where ▷◁∈ {≥,≤, = }, we can derive
∑

i cioi ▷◁ k310

using cutting planes.311

Proof. As we have an arithmetic graph, we know that we can derive (12) for every inner312

node in the graph. By adding all these constraints together, we obtain the constraint313 ∑
i aixi =

∑
i cioi, which can be combined with

∑
i aixi ▷◁ k to obtain

∑
i cioi ▷◁ k. ◀314

S. Gocht, R. Martins, J. Nordström and A. Oertel XX:9

Algorithm 1 General algorithm for proof logging arithmetic encodings.
1: procedure proof_log_encoding(C, f, G, F)
2: ▷ input: C is of the form

∑n
i=1 aiℓi ▷◁ k, with k, n ∈ N and ▷◁∈ {≥,≤, = }.

3: ▷ input: an arithmetic graph G = (V, E) with input
∑

i aixi and output
∑

i cioi

4: ▷ input: a function f that takes a node and derives its preserving equality
5: ▷ input: the CNF encoding F to be derived
6: sum the constraints f(v) for v ∈ V in topological order to obtain

∑
i aixi =

∑
i cioi

7: combine
∑

i aixi =
∑

i cioi and C to obtain
∑

i cioi ▷◁ k

8: derive each clause in the CNF encoding F via RUP

Once the bound on the input variables is translated to a bound on the output315

variables, all clauses of the CNF encoding will follow by reverse unit propagation. This316

results in the general algorithm for proof logging encodings shown in Algorithm 1. Note317

that the nodes of the graph need to be traversed in a topological order when deriving318

the preserving equality. Otherwise we can not use that the output variables of a node319

are fresh, which will be crucial for the presented derivations.320

Let us now discuss three common ways to represent natural numbers, as well as321

some general purpose operations on these representations that are used to derive the322

preserving equality for inner nodes. The easiest way to encode a natural number j with323

domain A = { 0, 1, . . . , m } using Boolean variables is to use a unary number, where the324

number of variables zi set to true is equal to j, i.e., j =
∑

i∈[m] zi. For better propagation325

behaviour, it is usually required that the zi variables are ordered via constraints zi ≥ zi+1,326

which enforces that zi is true if and only if j ≥ i. This representation is used in the327

sequential counter [46] and totalizer encoding [3] and is known as order encoding.328

▶ Proposition 5 (Unary Sum). For any literals ℓ1, . . . , ℓn we can derive the constraints329 ∑n
i=1ℓi =

∑n
i=1zi (13)330

zi ≥ zi+1 i ∈ [n− 1] . (14)331
332

using O(n) steps, where z1, . . . , zn are fresh variables.333

Conceptually, adding these constraints does not change satisfiability, because they334

can always be satisfied using the fresh variables. We already discussed deriving these335

constraints in the context of the sequential counter encoding. The general idea is to336

introduce the fresh variables via reification zi ⇔
∑n

i=1ℓi ≥ i, after which we can obtain337

the greater-than part of the equality by maintaining the invariant
∑n

i=1ℓi +
∑j

i=1 zi ≥ j338

and analogously for the less-than part. A detailed description of the algorithm for339

deriving a unary sum is provided in Appendix A.1.340

If we want to encode a natural number j, for which we know that it can only341

take values in a small domain A, then introducing variables for all values in the range342

introduces a lot of redundant variables. For example if j ∈ { 0, 50, 75 }, then the first 50343

variables in a full unary representation are either all true or all false, but will never take344

different values. For a more concise encoding we can use a sparse representation, i.e., we345

represent j ∈ { 0, 50, 75 } as 50 · z50 + 25 · z75 and enforce that z50 ≥ z75. In general, we346

use347

sparse(z⃗, A) =
∑

i∈A\{ 0 }(i− pred(i, A))zi , (15)348
349

where pred(i, A) = max({ j ∈ A | j < i }). Additionally, we enforce that the zi variables350

are ordered, i.e., zi ≥ zsucc(i,A), where succ(i, A) = min({ j ∈ A ∪ {∞} | j > i }). This351

XX:10 Certified CNF Translations for Pseudo-Boolean Solving

representation is used in the sequential weight counter [31] and generalized totalizer352

encoding [32].353

▶ Proposition 6 (Sparse Unary Sum). Given A, B ⊆ N, E = { i + j | i ∈ A, j ∈ B },354

ordering constraints on variables y⃗ and y⃗ ′, as well as fresh variables z⃗, we can derive355

sparse(y⃗, A) + sparse(y⃗ ′, B) = sparse(z⃗, E) , and (16a)356

zi ≥ zsucc(i,E) i ∈ E \ {max (E) } , (16b)357
358

using O(|A| · |B|) steps.359

As in the case of the unary sum, these constraints can be added without changing360

satisfiability, because we can always set the fresh zi variables such that the constraints361

are satisfied. The general idea is to introduce the fresh variables via reification zi ⇔362 ∑n
i=1ℓi ≥ i. Then we simulate a brute-force search on the possible combinations of363

values for A and B, showing that the equality holds in all cases. A detailed description364

can be found in Appendix A.2.365

Finally, if we want to represent a natural number that is large and has a large366

domain with maximal value m, then we can encode it using a binary representation, i.e.,367

j =
∑⌊log2(m)⌋

i=0 2izi. To build a binary number (as is discussed in Section 5) it sufficient368

to compose multiple full adders, which compute the sum of up to three input bits, using369

a binary adder circuit [18].370

▶ Proposition 7. For literals ℓ1, ℓ2, ℓ3 and fresh variables z1, z0 we can derive the371

constraints372

ℓ1 + ℓ2 + ℓ3 = 2z1 + z0 (17)373

using O(1) steps.374

Again, it should be clear that this equality can be added without changing satisfiability375

because it can be satisfied using the fresh variables. To derive it, we reify376

c⇔ x + y + z ≥ 2 (18a)377

s⇔ x + y + z + 2c ≥ 3 . (18b)378
379

The equality can be derived by multiplying (18a) by 2, adding (18b) and dividing the380

result by 3 as discussed in detail in [27].381

In Section 5 and Appendix B, it is demonstrated how to apply this framework for382

the binary adder and the (generalized) totalizer encoding, respectively.383

5 Binary Adder Encoding384

The binary adder encoding [18] is used to encode general pseudo-Boolean constraints of385

the form
∑

i aiℓi ▷◁ k. The idea is to use an adder network to obtain the value of
∑

i aiℓi386

as a binary number
∑bits

i=0 2ioi, where oi are the output literals and bits =
⌊
log2(

∑
i ai)

⌋
387

is the required bit width. To enforce the constraint, the output bits oi are constrained388

by clauses that perform a bitwise comparison with k in binary representation.389

To recapitulate the algorithm for the construction of the adder network in [18], we390

need some more notation. A 2m-bit is a literal that represents the numerical value 2m.391

A 2m-bucket is a queue of bits where each bit has the value 2m and that supports392

S. Gocht, R. Martins, J. Nordström and A. Oertel XX:11

source

Adder

Adder Adder Adder

sink

20-bit 21-bit 22-bit 23-bit

x1 + x3 + x4

x5
s1

s2

2c1
2c2

2s3

4c3

4x1 + 4x2

4s4
8c4

Figure 4 Layout of the arithmetic graph for adder network encoding of 5x1+4x2+x3+x4+x5 ≥ 5.

operations to insert and extract bits. We use [m]2 to denote the binary representation393

of a natural number m.394

The construction of the network starts by initializing each 2m-bucket with all literals395

ℓi such that the 2m-bit of [ai]2 is 1. Then we repeat the following steps until there is at396

most one element left in each bucket. Consider the 2m-bucket with the smallest value397

that has at least 2 elements in it. If there are only 2 elements in the 2m-bucket, take x398

and y from the bucket and set z = 0. Otherwise, let x, y and z be 3 elements from the399

2m-bucket and remove them from the 2m-bucket. The bits x, y and z are used as input400

for a new full adder with fresh variables c and s as output, where c is a 2m+1-bit and s is401

a 2m-bit. The bits c and s are then inserted in their respective buckets, possibly creating402

a new bucket. An algorithm for constructing the network is given in Appendix A.3.403

The arithmetic graph is constructed directly from the adder network such that each404

full adder is represented by a node. Each inner node constructed from the 2m-bucket,405

i.e., which has 2m-bits as input, has input edges with labels 2mx, 2my and 2mz and406

output edges with labels 2ms and 2m+1c. An example of the resulting graph is shown in407

Figure 4. The preserving equality can be derived using Proposition 7 and multiplying the408

resulting equality x + y + z = 2c + s by 2m to obtain 2mx + 2my + 2mz = 2m+1c + 2ms.409

After construction of the adder network, each 2m-bucket has at most one 2m-bit left410

and we connect the corresponding edges to the sink, resulting in an output of the form411 ∑bits
i=0 2ioi. If the 2m-bucket is empty, om is set to 0.412

Each full adder of the network is encoded to CNF via the clauses413

y + z + c ≥ 1
x + z + c ≥ 1
x + y + c ≥ 1

x + y + z + s ≥ 1
x + y + z + s ≥ 1
x + y + z + s ≥ 1
x + y + z + s ≥ 1

y + z + c ≥ 1
x + z + c ≥ 1
x + y + c ≥ 1

x + y + z + s ≥ 1
x + y + z + s ≥ 1
x + y + z + s ≥ 1
x + y + z + s ≥ 1 . (19)414

Note that all the clauses in (19) are RUP with respect to the preserving equality415

x + y + z = 2c + s.416

To compare k with the output of the circuit, the encoding performs the comparison417

x⃗ ≥ y⃗ for bit vectors x⃗ and y⃗, where either x⃗ = obits . . . o1o0 and y⃗ = [k]2 or vice versa,418

depending on whether we want to encode
∑n

i=1 aiℓi ≥ k or
∑n

i=1 aiℓi ≤ k, respectively.419

If we want to encode
∑n

i=1 aiℓi = k, then the comparison for both directions is performed.420

If the size of these vectors is different, the shorter vector is padded with 0. Then, for421

i = 0, . . . , bits, the constraint422

xi + yi +
bits∑
j=i

xjyj + xjyj ≥ 1 (20)423

424

XX:12 Certified CNF Translations for Pseudo-Boolean Solving

is added to the CNF encoding. Note that either x⃗ or y⃗ is constant and hence the425

constraint is always a clause. This clause guarantees that the 2i-bit on the variable side426

is equal to the 2i-bit in [k]2 or there was already a 2j-bit for j > i that is different to427

the 2j-bit in [k]2.428

The clauses (20) are RUP with respect to
∑bits

i=0 2ioi ▷◁ k, which we obtain from the429

arithmetic graph using Proposition 4. The clauses are RUP because the RUP step will430

set all 2j-bits, where j > i, to the same value as in [k]2 and the 2i-bit to the opposite431

value of the 2i-bit in [m]2, which falsifies
∑bits

i=0 2ioi ▷◁ k.432

6 Experimental Results433

To show the generality of our approach for proof logging arithmetic encodings, we434

implemented the sequential counter encoding [46], binary adder encoding [18], total-435

izer [3] and generalized totalizer encodings [32], in a certified encoding framework called436

VeritasPBLib. This framework inputs a pseudo-Boolean formula in OPB format and437

returns a CNF translation with the corresponding proof logging certificate. We used the438

verifier VeriPB [48] to verify the proof logging certificate returned by VeritasPBLib.439

The CNF formula is then solved by a modified version of the SAT solver kissat [34] 1
440

that generates proof logging compatible with the VeriPB verifier. Finally, we conjoin441

the proof logging from the CNF translation with the proof logging from SAT solving442

and verify the end-to-end pipeline with VeriPB.443

The experiments were conducted on Amazon EC2 r5.large instances (2 vCPU) with444

Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz CPUs, 16 GB of memory, and gp2445

volumes. We ran one process on each instance with a memory limit of 15 GB and a time446

limit of 7,200 seconds for verifying the proof with VeriPB, and a time limit of 1,800447

seconds for CNF translation with VeritasPBLib and SAT solving with kissat. We gave448

additional time for verification, since verification is slower than solving the problem.449

To evaluate VeritasPBLib, we collected 1,803 pseudo-Boolean formulas from the450

PB 2016 Evaluation.2 We can split these instances into four categories: (1) formulas with451

only clauses (279 instances), (2) formulas with clauses and cardinality constraints (772452

instances), (3) formulas with clauses and general PB constraints (444 instances), and (4)453

formulas with clauses, cardinality and general PB constraints (308 instances). Since this454

work targets the verification of formulas with cardinality or general PB constraints, we455

excluded the 279 pure CNF formula instances, as those can already be certified with456

existing techniques. More details about the instances can be found in Appendix C.1.457

The goal of our evaluation is to answer the following questions:458

1. Can we use the end-to-end framework to verify the results of SAT-based approaches459

to solve pseudo-Boolean formulas and how efficient is verification?460

2. How long does verification of the proof logging take when compared to translating461

the pseudo-Boolean formula to CNF?462

End-to-End Solving and Verification Table 1 shows how VeritasPBLib can be463

used to generate a CNF formula that can be solved by kissat and verified by VeriPB.464

For instances with cardinality constraints (Card), we use the sequential and totalizer465

encoding to translate those constraints to CNF. For instances with general PB constraints466

1 Available at https://gitlab.com/MIAOresearch/kissat_fork
2 Available at http://www.cril.univ-artois.fr/PB16/

https://gitlab.com/MIAOresearch/kissat_fork
http://www.cril.univ-artois.fr/PB16/

S. Gocht, R. Martins, J. Nordström and A. Oertel XX:13

Table 1 Number of translated, solved and verified instances for each encoding

Translation Solving

Category #Inst Encoding #CNF #Veri #Solved #Verified
SAT UNSAT SAT UNSAT

Card 772 Sequential 772 772 139 480 133 479
Totalizer 772 772 139 475 130 474

PB 444 Adder 444 444 179 167 178 165
GTE 425 414 164 162 150 151

Card+PB 308 Seq+Adder 306 296 134 152 128 151

(PB), we use the adder and generalized totalizer encoding (GTE) to translate general467

PB constraints to CNF. Finally, for instances with both cardinality and general PB468

constraints (Card+PB), we use the sequential encoding for cardinality constraints and469

the adder encoding for PB constraints, henceforth denoted by Seq+Adder. Even though470

other combinations of cardinality and PB encodings could be explored, the goal of this471

work is not to find the best performing encodings but to show that we can verify the472

final result with a variety of encodings.473

The column #CNF shows for how many instances VeritasPBLib successfully474

generated the CNF translation. For most of the formulas, we can translate the PB475

formula to CNF. The exceptions are 19 instances using the generalized totalizer (GTE)476

encoding and 2 instances using the Seq+Adder encoding. In those cases, the number of477

clauses generated is too large and exceeds the resource limits used in our evaluation.478

The column #Veri under translation shows how many instances VeriPB can verify479

the proof logging certificate generated by VeritasPBLib. Except for a few instances480

for the GTE and Seq+Adder where the proof is large, VeriPB can verify the CNF481

translation. Note that if verification of the translation is successful, then this guarantees482

that the CNF encoding does not remove any solutions of the PB formula.483

The columns #Solved and #Verified under solving show how many instances can be484

solved by the SAT solver kissat and from those how many can be verified by VeriPB.485

If a satisfiable formula is verified, then it means that all clauses derived by kissat are486

due to correct derivations and the satisfying assignment returned by the SAT solver is a487

satisfying assignment of the original PB formula. If an unsatisfiable formula is verified,488

then it means that the reason of unsatisfiability is due to correct derivations.489

We can verify 99% of the solved instances for unsatisfiable instances, which shows490

that the current approach can be used in practice to verify unsatisfiable results of SAT491

solvers when solving PB formulas. For satisfiable instances, we can verify 95% of the492

solved instances. However, for instances that VeriPB does not verify the result within the493

time limit, we can still certify that the satisfying assignment of the SAT solver satisfies494

the original PB formula. Even though VeriPB is already able to verify the majority of495

the proof logging, improvements to the verifier are orthogonal to our approach and can496

further increase the number of verified instances.497

Translation and Verification Let us now focus on the CNF translation without solving.498

Our experiments show that the average overhead for proof logging ranges from 2× to 3×499

slower for all encodings with the exception of GTE which is around 5× slower. However,500

since translation is fast for the majority of instances (see Figure 6), the additional501

overhead of proof logging is not an issue when translating the PB formulas to CNF. A502

more detailed comparison of running times between CNF translation with and without503

XX:14 Certified CNF Translations for Pseudo-Boolean Solving

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF

P
ro
o
f
L
o
gg
in
g

sequential
totalizer

(a) Cardinality formulas

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF

P
ro
o
f
L
o
gg
in
g

adder
gte

seq+adder

(b) General pseudo-Boolean formulas

Figure 5 Comparison between CNF file size and proof logging file size in KiB

proof logging can be found in Appendix C.2.504

The overhead for translation can be explained with the increased proof size compared505

to the size of the CNF encoding as shown in Figure 5. For most instances the proof size506

seems to be within a constant factor of the CNF file size. However, there is a series of507

benchmarks for which the sequential counter encoding requires super linear (but still508

polynomial) proofs. It turns out that these instances are all crafted instances encoding a509

vertex cover [20]. These instances contain a constraint enforcing a constant fraction of510

the literals in the formula to be true, which is the worst case scenario for the sequential511

counter. At first glance, this super linear relationship seems to contradict the expected512

linear relationship between the number of clauses in the CNF and the number of steps513

in the proof. However, this can be explained as each reification step for deriving the514

unary sum introduces a constraint of linear size, so even though the number of steps for515

deriving a unary sum is linear, the proof size will be quadratic. It would be desirable to516

find a derivation of the unary sum that only requires linear proof size.517

Figure 6 shows the relationship between the time to generate the CNF translation518

using VeritasPBLib and the time to verify the translation using VeriPB. The time519

to verify the translation compared to the translation itself is not negligible. Over520

all encodings, for 75% of benchmarks verification takes at-most 49 times longer than521

translation and for 98% of benchmarks take at-most 100 times longer. To some degree,522

such an overhead in verification time of the translation is expected, as the translation523

does not need to reason about its steps and the verification needs to perform some524

reasoning to justify the correctness of the proof steps. However, this also indicates that525

there is still room for improvement, both in terms of improving the performance of the526

verifier but potentially also by finding easier to verify derivation steps.527

7 Concluding Remarks528

In this work, we develop a general framework for certified translations of pseudo-Boolean529

constraints into CNF using cutting-planes-based proof logging. Since our method is530

a strict extension of DRAT , the proof for the translation can be combined with a531

SAT solver DRAT proof log to provide, for the first time, end-to-end verification for532

CDCL-based pseudo-Boolean solvers. Our use of the cutting planes method is not only533

S. Gocht, R. Martins, J. Nordström and A. Oertel XX:15

10−4 10−3 10−2 10−1 100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

102

103

104
timeout

translation

ve
ri

fi
ca

ti
o
n

memout

sequential
totalizer

(a) Cardinality formulas

10−4 10−3 10−2 10−1 100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

102

103

104
timeout

translation

ve
ri

fi
ca

ti
o
n

memout

adder
gte

seq+adder

(b) General pseudo-Boolean formulas

Figure 6 Comparison between CNF translation and verification of the corresponding proof logging

crucial to deal with the pseudo-Boolean format of the input, but the expressivity of the534

0-1 linear constraints also allows us to certify the correctness of the translation to CNF535

in a concise and elegant way. While there is still room for performance improvements in536

proof logging and verification, our experimental evaluation shows that this approach is537

feasible in practice.538

We want to point out that the tools we develop can also be used for the more general539

task of proving equivalence of reformulated problems. For the decision problem for a540

PB formula F , we only need to show that the CNF translation Tr(F) can be derived541

from F , since a proof of unsatisfiability of Tr(F) then shows that F is also unsatisfiable.542

However, our method can be adapted to show that if the PB formula F over variables X543

is translated to a CNF formula Tr(F) over variables X ∪ Y , then the two formulas544

are equivalent in the sense that (i) any satisfying assignment α to F propagates an545

assignment β to Y such that α∪ β satisfies Tr(F), and (ii) for any satisfying assignment546

α ∪ β to Tr(F) it holds that α satisfies F . We believe that such certified problem547

reformulation should be useful also in, e.g., constraint programming.548

In our view, proof logging for pseudo-Boolean decision problems is only a first step.549

We believe that our method should also be sufficient to support proof logging for MaxSAT550

solvers. As a concrete example, using the techniques developed in this paper it should551

be possible to certify the clauses added during core extraction and objective function552

reformulation in core-guided MaxSAT solving [23, 38]. While supporting MaxSAT553

solvers using approaches such as implicit hitting set (IHS) [17] and abstract cores [6]554

seems a bit more challenging, we are still hopeful that our work could lead to a unified555

proof logging method for both MaxSAT solving and pseudo-Boolean optimization using556

cutting-planes-based reasoning as in [22, 35].557

References558

1 Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Meta-559

morphic testing of constraint solvers. In Proceedings of the 24th International Conference on560

Principles and Practice of Constraint Programming (CP ’18), volume 11008 of Lecture Notes561

in Computer Science, pages 727–736. Springer, August 2018.562

XX:16 Certified CNF Translations for Pseudo-Boolean Solving

2 Seulkee Baek, Mario Carneiro, and Marijn J. H. Heule. A flexible proof format for SAT563

solver-elaborator communication. In Proceedings of the 27th International Conference on Tools564

and Algorithms for the Construction and Analysis of Systems (TACAS ’21), volume 12651 of565

Lecture Notes in Computer Science, pages 59–75. Springer, MarchApril 2021.566

3 Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of Boolean cardinality con-567

straints. In Proceedings of the 9th International Conference on Principles and Practice of568

Constraint Programming (CP ’03), volume 2833 of Lecture Notes in Computer Science, pages569

108–122. Springer, September 2003.570

4 Lee A. Barnett and Armin Biere. Non-clausal redundancy properties. In Proceedings of the571

28th International Conference on Automated Deduction (CADE-28), 2021.572

5 Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean op-573

timization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für Informatik, January574

1995.575

6 Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set MaxSat576

solving. In Proceedings of the 23rd International Conference on Theory and Applications of577

Satisfiability Testing (SAT ’20), volume 12178 of Lecture Notes in Computer Science, pages578

277–294. Springer, July 2020.579

7 Armin Biere. Tracecheck. http://fmv.jku.at/tracecheck/, 2006. Accessed on 2021–03–19.580

8 Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of581

Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press,582

2nd edition, February 2021.583

9 Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of584

SAT and QBF solvers. In Proceedings of the 13th International Conference on Theory and585

Applications of Satisfiability Testing (SAT ’10), volume 6175 of Lecture Notes in Computer586

Science, pages 44–57. Springer, July 2010.587

10 Randal E. Bryant, Armin Biere, and Marijn J. H. Heule. Clausal proofs for pseudo-boolean588

reasoning. In Tools and Algorithms for the Construction and Analysis of Systems - TACAS589

2022, page To appear., 2022.590

11 Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,591

Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,592

volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 233–350.593

IOS Press, 2nd edition, February 2021.594

12 Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming595

results. In Proceedings of the 19th International Conference on Integer Programming and596

Combinatorial Optimization (IPCO ’17), volume 10328 of Lecture Notes in Computer Science,597

pages 148–160. Springer, June 2017.598

13 William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane599

proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.600

14 William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-601

bound approach for exact rational mixed-integer programming. Mathematical Programming602

Computation, 5(3):305–344, September 2013.603

15 Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt, Matt Kaufmann, and Peter Schneider-604

Kamp. Efficient certified RAT verification. In Proceedings of the 26th International Conference605

on Automated Deduction (CADE-26), volume 10395 of LNCS, pages 220–236. Springer, 2017.606

16 Luís Cruz-Filipe, Joao Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution607

proof checking. In Proceedings of the 23rd International Conference on Tools and Algorithms608

for the Construction and Analysis of Systems (TACAS ’17), volume 10205 of LNCS, pages609

118–135. Springer, 2017.610

17 Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT611

instances. In Proceedings of the 17th International Conference on Principles and Practice of612

Constraint Programming (CP ’11), volume 6876 of Lecture Notes in Computer Science, pages613

225–239. Springer, September 2011.614

http://fmv.jku.at/tracecheck/

S. Gocht, R. Martins, J. Nordström and A. Oertel XX:17

18 Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into SAT. Journal615

on Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, March 2006.616

19 Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed617

integer programming. In Proceedings of the 22nd International Conference on Integer Pro-618

gramming and Combinatorial Optimization (IPCO ’21), volume 12707 of Lecture Notes in619

Computer Science, pages 163–177. Springer, May 2021.620

20 Jan Elffers, Jesús Giráldez-Cru, Jakob Nordström, and Marc Vinyals. Using combinatorial621

benchmarks to probe the reasoning power of pseudo-Boolean solvers. In Proceedings of the622

21st International Conference on Theory and Applications of Satisfiability Testing (SAT ’18),623

volume 10929 of Lecture Notes in Computer Science, pages 75–93. Springer, July 2018.624

21 Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences625

using pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial626

Intelligence (AAAI ’20), pages 1486–1494, February 2020.627

22 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving.628

In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI ’18),629

pages 1291–1299, July 2018.630

23 Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Proceedings of the631

9th International Conference on Theory and Applications of Satisfiability Testing (SAT ’06),632

volume 4121 of Lecture Notes in Computer Science, pages 252–265. Springer, August 2006.633

24 Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints.634

In Proceedings of the 25th International Conference on Principles and Practice of Constraint635

Programming (CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 565–582.636

Springer, October 2019.637

25 Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and638

James Trimble. Certifying solvers for clique and maximum common (connected) subgraph639

problems. In Proceedings of the 26th International Conference on Principles and Practice of640

Constraint Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages641

338–357. Springer, September 2020.642

26 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets643

cutting planes: Solving with certified solutions. In Proceedings of the 29th International Joint644

Conference on Artificial Intelligence (IJCAI ’20), pages 1134–1140, July 2020.645

27 Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-646

Boolean proofs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence647

(AAAI ’21), pages 3768–3777, February 2021.648

28 Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF649

formulas. In Proceedings of the Conference on Design, Automation and Test in Europe650

(DATE ’03), pages 886–891, March 2003.651

29 Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking652

clausal proofs. In Proceedings of the 13th International Conference on Formal Methods in653

Computer-Aided Design (FMCAD ’13), pages 181–188, October 2013.654

30 Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with655

extended resolution. In Proceedings of the 24th International Conference on Automated656

Deduction (CADE-24), volume 7898 of Lecture Notes in Computer Science, pages 345–359.657

Springer, June 2013.658

31 Steffen Hölldobler, Norbert Manthey, and Peter Steinke. A compact encoding of pseudo-659

boolean constraints into SAT. In Birte Glimm and Antonio Krüger, editors, Proceedings of KI660

2012: Advances in Artificial Intelligence, the 35th Annual German Conference on AI, volume661

7526 of Lecture Notes in Computer Science, pages 107–118. Springer, 2012.662

32 Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer encoding for663

pseudo-Boolean constraints. In Proceedings of the 21st International Conference on Principles664

and Practice of Constraint Programming (CP ’15), volume 9255 of Lecture Notes in Computer665

Science, pages 200–209. Springer, August-September 2015.666

XX:18 Certified CNF Translations for Pseudo-Boolean Solving

33 Daniela Kaufmann, Mathias Fleury, and Armin Biere. The proof checkers pacheck and pastèque667

for the practical algebraic calculus. In Proceedings of the 20th International Conference on668

Formal Methods in Computer-Aided Design (FMCAD ’20), pages 264–269. IEEE, 2020.669

34 Kissat SAT solver. http://fmv.jku.at/kissat/.670

35 Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability,671

Boolean Modeling and Computation, 7:59–64, July 2010.672

36 João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional673

satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999. Preliminary version674

in ICCAD ’96.675

37 Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algo-676

rithms. Computer Science Review, 5(2):119–161, May 2011.677

38 António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and João P. Marques-678

Silva. Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints,679

18(4):478–534, October 2013.680

39 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.681

Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation682

Conference (DAC ’01), pages 530–535, June 2001.683

40 NaPS (Nagoya pseudo-Boolean solver). https://www.trs.cm.is.nagoya-u.ac.jp/projects/684

NaPS/.685

41 Open-WBO: An open source version of the MaxSAT solver WBO. http://sat.inesc-id.pt/686

open-wbo/.687

42 Tobias Philipp and Peter Steinke. PBLib – a library for encoding pseudo-Boolean constraints688

into cnf. In Proceedings of the 18th International Conference on Theory and Applications of689

Satisfiability Testing (SAT ’15), volume 9340 of Lecture Notes in Computer Science, pages690

9–16. Springer, September 2015.691

43 Pseudo-Boolean competition 2016. http://www.cril.univ-artois.fr/PB16/, July 2016.692

44 Daniela Ritirc, Armin Biere, Manuel Kauers, A Bigatti, and M Brain. A practical polynomial693

calculus for arithmetic circuit verification. In 3rd International Workshop on Satisfiability694

Checking and Symbolic Computation (SC2’18), pages 61–76, 2018.695

45 The international SAT Competitions web page. http://www.satcompetition.org.696

46 Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints. In697

Proceedings of the 11th International Conference on Principles and Practice of Constraint698

Programming (CP ’05), volume 3709 of Lecture Notes in Computer Science, pages 827–831.699

Springer, October 2005.700

47 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th International701

Symposium on Artificial Intelligence and Mathematics (ISAIM ’08), 2008. Available at702

http://isaim2008.unl.edu/index.php?page=proceedings.703

48 VeriPB: Verifier for pseudo-Boolean proofs. https://gitlab.com/MIAOresearch/VeriPB.704

49 Joost P. Warners. A linear-time transformation of linear inequalities into conjunctive normal705

form. Information Processing Letters, 68(2):63–69, 1998.706

50 Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking707

and trimming using expressive clausal proofs. In Proceedings of the 17th Internatjuional708

Conference on Theory and Applications of Satisfiability Testing (SAT ’14), volume 8561 of709

Lecture Notes in Computer Science, pages 422–429. Springer, July 2014.710

A Derivations for Building Blocks711

Before going into detail on the derivations and presenting their respective algorithms,712

the notation for the proof logging is described. This is similar to the notation of the713

proof file used by VeriPB.714

Lines are added to the proof file using the proof_log(·) command. In this format,715

every constraint in the proof gets a unique identifier (or just id for brevity). We can716

http://fmv.jku.at/kissat/
https://www.trs.cm.is.nagoya-u.ac.jp/projects/NaPS/
https://www.trs.cm.is.nagoya-u.ac.jp/projects/NaPS/
https://www.trs.cm.is.nagoya-u.ac.jp/projects/NaPS/
http://sat.inesc-id.pt/open-wbo/
http://sat.inesc-id.pt/open-wbo/
http://sat.inesc-id.pt/open-wbo/
http://www.cril.univ-artois.fr/PB16/
http://www.satcompetition.org
http://isaim2008.unl.edu/index.php?page=proceedings
https://gitlab.com/MIAOresearch/VeriPB

S. Gocht, R. Martins, J. Nordström and A. Oertel XX:19

Algorithm 2 Deriving a unary sum over fresh variables zi.
1: procedure derive_unary_sum(C ′)
2: ▷ input: C ′ is of the form

∑n
i=1ℓi =

∑n
i=1 zi and describes the constraint to be

derived
3: ▷ the zi variables need to be fresh, the left hand side is the sum to be encoded
4: for j from 1 to k do
5: Dgeq

j , Dleq
j ← Reify(zj ⇔

∑n
i=11 · ℓi ≥ j) ▷ Step 1: introduce variables as

reification
6: Cgeq ← deriveSum(Dgeq

1 , Dgeq
2 , . . . , Dgeq

n) ▷ Step 2: derive
∑n

i=1ℓi ≥
∑n

i=1zi

7: C leq ← deriveSum(Dleq
n , Dleq

n−1, . . . , Dleq
1) ▷ Step 3: derive

∑n
i=1ℓi ≤

∑n
i=1zi

8: for i from 1 to k − 1 do
9: DeriveOrdering(Dleq

i , Dgeq
i+1) ▷ Step 4: derive zi ≥ zi+1, i ∈ [n− 1]

10: return Cgeq, C leq

Algorithm 3 Reify
∑n

i=1aiℓi ≥ j using the fresh variable zj .

1: procedure reify(zj ⇔
∑n

i=1aiℓi ≥ j)
2: Cgeq ←

∑n
i=1aiℓi + jzj ≥ j ▷ zj ⇒

∑n
i=1aiℓi ≥ j in normalized form

3: proof_log(red Cgeq ; zj -> 0)
4: C leq ←

∑n
i=1aiℓi + (

∑n
i=1 ai − j + 1)zj ≥

∑n
i=1 ai − j + 1 ▷ zj ⇐

∑n
i=1aiℓi ≥ j in

normalized form
5: proof_log(red C leq ; zj -> 1)
6: return Cgeq, C leq

express cutting planes derivations in reverse polish notation where constraints are referred717

to by their ids. For example, given previously derived constraints C and D, the line718

‘proof_log(pol C D + 3 * 4 d)’ adds C and D, multiplies the result by 3, and finally719

divides by 4 (rounding up). In the concrete format constraints in reverse polish notation720

are represented by an identifier, but we omit this detail for simplicity and operate on the721

constraints directly. The proof format also supports the saturation rule, which, given722

a normalized constraint
∑

iaiℓi ≥ A, allows to derive
∑

i min(ai, A)ℓi ≥ A. We use723

‘proof_log(pol C s)’ to denote saturation in the proof format.724

A RUP constraint C can be added using ‘proof_log(rup C)’. The syntax for adding725

a constraint as reification is ‘red z ⇒ C ; z 1’ and ‘red z ⇐ C ; z 0’, respectively (for726

more details please refer to [27]).727

A.1 Deriving the Unary Sum728

Deriving the constraints of a unary sum over fresh variables zj , i.e.,729 ∑n
i=1ℓi ≥

∑n
i=1zi , (21a)730 ∑n

i=1ℓi ≤
∑n

i=1zi , and (21b)731

zi ≥ zi+1 i ∈ [n− 1] , (21c)732
733

is described in Algorithm 2, which is split into four steps. Step 1 is to introduce the fresh734

variables zj as reifications of the constraints
∑n

i=1ℓi ≥ j, which is shown in Algorithm 3735

for the more general case using arbitrary positive coefficients.736

Step 2: Deriving the Lower Bound. To derive (21a) in Algorithm 4 we maintain737

the invariant
∑n

i=1ℓi +
∑j

i=1 zi ≥ j, which holds by induction. For j = 1 the invariant738

XX:20 Certified CNF Translations for Pseudo-Boolean Solving

Algorithm 4 Derive sum of reification variables.
1: procedure deriveSum(D1, . . . , Dn)
2: ▷ input: Dj is of the form

∑n
i=1 ℓi + jzj ≥ j

3: C ← D1
4: for j from 2 to n do ▷ Invariant: C :

∑n
i=1ℓi +

∑j
i=1 zi ≥ j

5: proof_log(pol C j − 1 * Dj + j d)
6: C ← ((j − 1) · C + Dj)/j

7: return C

Algorithm 5 Deriving an ordering constraint zA ≥ zB from the reification constraints.
1: procedure DeriveOrdering(C, D)
2: ▷ input: C is of form zA ⇒

∑n
i=1aiℓi ≥ A

3: ▷ input: D is of form zB ⇐
∑n

i=1aiℓi ≥ B

4: divisor ←
∑n

i=1 ai

5: ▷ derive zA ≥ zB if A < B

6: proof_log(pol C D + divisor d)

is equivalent to the reification constraint z1 ⇒
∑n

i=1ℓi ≥ 1, which in normalized form739

is
∑n

i=1ℓi + z1 ≥ 1 and hence the base case is covered. For the inductive step going740

from j to j + 1, we multiply the invariant by j and add the reification constraint741

zj+1 ⇒
∑n

i=1ℓi ≥ j + 1, which is
∑n

i=1ℓi + (j + 1)zj+1 ≥ j + 1 in normalized form, to742

get (j+1)
∑n

i=1ℓi+j
∑j

i=1 zi+(j + 1)zj+1 ≥ j2+j + 1. Note that j2+j + 1 = (j+1)2−j743

and hence division by j + 1 and rounding up yields
∑n

i=1ℓi +
∑j

i=1 zi + zj+1 ≥ j + 1,744

i.e., the invariant for j + 1. For j = k + 1 the invariant is the normalized form of (21a).745

Step 3: Deriving the Upper Bound. To derive (21b) we can use Algorithm 4746

again but need to provide the constraints in reverse order to fit the required input format.747

Step 4: Deriving the Ordering Constraints. The ordering constraint is derived748

in Algorithm 5, using the reification constraints: We add the constraints used for749

reification, that is zj+1 ⇒
∑n

i=1aiℓi ≥ j + 1 and zj ⇐
∑n

i=1aiℓi ≥ j. In normalized750

form these two constraints are (j + 1)zj+1 +
∑n

i=1aiℓi ≥ j + 1 and (m − j + 1)zj +751 ∑n
i=1aiℓi ≥ m − j + 1, where m =

∑n
i=1 ai. Adding both constraints together yields752

(m− j + 1)zj + (j + 1)zj+1 ≥ 2 and we get the desired ordering constraint after division753

by a large enough number, e.g., m.754

A.2 Deriving the Sparse Unary Sum755

In this section we prove Proposition 6 by providing Algorithm 6, which derives the756

sparse unary sum of two numbers in sparse unary representation. As for the unary757

sum, we start in Step 6.1 by introducing the required fresh variables via reification.758

However, we only need to introduce the variables that will be used, i.e., those with index759

in E. If k-simplification is used, then also variables with index bigger than k need to be760

introduced, as without them equality cannot be derived. (The introduction of variables761

with index bigger than k can be avoided by having a arithmetic graph each for the upper762

and lower bound and relaxing the preserving equality to inequalities.) After introducing763

the variables we can derive the ordering constraints as before.764

In Step 6.2 we introduce a variable zeq which is true if and only if the equality to be765

derived is true. Note that we need to represent an equality as two inequalities and hence766

S. Gocht, R. Martins, J. Nordström and A. Oertel XX:21

need to introduce separate variables zgeq, zleq for each inequality and then combine them767

into zeq.768

In Step 6.3 we derive zeq ≥ 1 by checking all combinations of values in A and B,769

which requires O(|A| · |B|) steps. Note that asymptotically this is the same number of770

steps as is required to compute which elements are in E so this step is still linear in the771

time needed to construct the encoding.772

In Step 6.4 we use that zeq ≥ 1 and hence zgeq = zleq = 1, which allows us to773

derive sparse(y⃗, A) + sparse(y⃗ ′, B) ≥ sparse(z⃗, E) and sparse(y⃗, A) + sparse(y⃗ ′, B) ≤774

sparse(z⃗, E) respectively by removing zgeq, zleq from the constraints introduced in775

Step 6.2.776

Algorithm 7 describes in detail how to derive zeq ≥ 1 by checking all combinations777

of values in A and B. Let us illustrate how the algorithm works with an example. Let778

A = { 0, 2 } and B = { 0, 2, 4 }. After the first iteration of the outer loop the algorithm779

derives the clauses780

y2+y′
2+ zeq ≥ 1 , (22a)781

y2+y ′
2+y′

4+zeq ≥ 1 , and (22b)782

y2+ y ′
4+zeq ≥ 1 . (22c)783

784

Note that deriving (22a) by reverse unit propagation sets y2 = y′
2 = zeq = 0. This785

causes the ordering constraints to propagate all variables in y⃗ and y⃗ ′. As all y⃗ and786

y⃗ ′ variables are set, the reification constraints introduced in Step 6.1 will cause all z⃗787

variables to propagate. As the constraints reified in Step 6.2 are now satisfied we also get788

the propagation zgeq = zleq = 1 and hence zeq should be set to 1 as well. However, we789

already set zeq to 0 and hence have a contradiction showing that (22a) can be derived.790

Deriving the other clauses works analogously.791

If we add all clauses in (22) together, then y′
2 and y′

4 get canceled out and we are left792

with 3y2 + 3zeq ≥ 1 which is saturated to obtain y2 + zeq ≥ 1. Analogously, the second793

iteration of the outer loop derives y2 + zeq ≥ 1, which added to the result of the first794

iteration yields 2zeq ≥ 1 and using saturation we obtain zeq ≥ 1 as desired.795

A.3 Derivation for binary adder encoding796

This section provides the algorithm for constructing the adder network in Algorithm 8797

and the proof logging and derivation of the preserving equality (17) from Proposition 7798

for a single binary full adder in Algorithm 9.799

B Totalizer and Generalized Totalizer Encoding800

The totalizer and generalized totalizer encoding accumulate the input in form of a801

balanced binary tree. The totalizer encoding is designed for encoding cardinality802

constraints and uses the order encoding to represent values, while the generalized totalizer803

is designed for general pseudo-Boolean constraints and uses a sparse representation.804

An example of an arithmetic graph for the generalized totalizer encoding is shown in805

Figure 7. This graph contains a leaf node for each of the variables in the encoded806

constraint (to obtain a unique source we simply combine all leaf nodes into one node).807

The leaf nodes are combined in form of a binary tree, where we ensure that the value is808

preserved for each inner node, i.e., each possible value of incoming edges is representable809

as value of the outgoing edges. To perform k-simplification the arithmetic graph has810

XX:22 Certified CNF Translations for Pseudo-Boolean Solving

Algorithm 6 Deriving a sparse unary sum over fresh variables z⃗.

1: procedure derive_sparse_unary_sum(C ′)
2: ▷ input: C ′ is of the form sparse(y⃗, A) + sparse(y⃗ ′, B) = sparse(z⃗, E) and describes

the constraint to be derived such that A, B ⊆ N, E = { i + j | i ∈ A, j ∈ B } and z⃗

variables are fresh
3: ▷ Step 6.1: introduce variables as reification and derive ordering
4: for j ∈ E \ { 0 } do
5: Dgeq

j , Dleq
j ← reify(zj ⇔ sparse(y⃗, A) + sparse(y⃗ ′, B) ≥ j)

6: for i ∈ E \ { 0, max (E) } do
7: DeriveOrdering(Dleq

i , Dgeq
succ(i,E)) ▷ derive zi ≥ zsucc(i,E)

8: ▷ Step 6.2: : reify constraint to be derived
9: Cgeq, _← reify(zgeq ⇔ sparse(y⃗, A) + sparse(y⃗ ′, B) ≥ sparse(z⃗, E))

10: C leq, _← reify(zleq ⇔ sparse(y⃗, A) + sparse(y⃗ ′, B) ≤ sparse(z⃗, E))
11: reify(zeq ⇔ zgeq + zleq ≥ 2)
12: ▷ Step 6.3: derive that zeq ≥ 1
13: try_all_values(sparse(y⃗, A), sparse(y⃗ ′, B), zeq)
14: ▷ Step 6.4: derive constraint to be derived from its reification
15: M ← max(A) + max(B) ▷ Coefficient so that reification variables get eliminated.
16: D ← zgeq ≥ 1
17: proof_log(rup D)
18: proof_log(pol Cgeq D M * +)
19: Cgeq ← Cgeq + M ·D
20: D ← zleq ≥ 1
21: proof_log(rup D)
22: proof_log(pol C leq D M * +)
23: C leq ← C leq + M ·D
24: return C leq, C leq

additional edges that go directly into the sink node. The formal definition of arithmetic811

graph for the (generalized) totalizer encoding is as follows.812

▶ Definition 8 (Arithmetic graph for the generalized totalizer encoding). Given a linear813

sum
∑

i aixi over n variables, let G be a binary tree with edges directed towards the root814

r, leaves si for i ∈ [n] and an additional sink node t with an edge (r, t). In what follows815

we will consider r as an inner node. The edge (si, v) from the leave si is labeled with816

aixi, which can be viewed as a sparse representation for values { 0, ai }. For an inner817

node v with two incoming edges with labels sparse(y⃗, A) and sparse(y⃗ ′, B), the outgoing818

edge e is labeled sparse(z⃗, E), where z⃗ are fresh variables and E = { i + j | i ∈ A, j ∈ B }.819

To obtain a graph with a single source we combine all si into a single node s. To perform820

k-simplification we split sparse(z⃗, E) =
∑

i∈E aizi into
∑

i≤succ(k,E) aizi, which is the821

label of the outgoing edge e, and
∑

i>succ(k,E) aici, which is the label for an addition822

outgoing edge e′ = (v, t).823

To see that the defined graph is an arithmetic graph, we only need to check that we824

can derive the preserving equality for each inner node. Each inner node has two incoming825

edges that are labeled with a sparse unary representation and all outgoing edges together826

form a sparse unary representation as well, so that we can use Proposition 6 to derive827

the required preserving equality. Note that Proposition 6 also requires to have ordering828

S. Gocht, R. Martins, J. Nordström and A. Oertel XX:23

Algorithm 7 Given a reified sparse unary sum, derive that the reification variable is true.
1: procedure fix(sparse(y⃗, A), a)
2: return ya + ysucc(a,A) ▷ replace y0 by 1 and y∞ by 0
3: procedure try_all_values(sparse(y⃗, A), sparse(y⃗ ′, B), zeq)
4: Couter ← 0 ≥ 0
5: for i ∈ A do
6: Cinner ← 0 ≥ 0
7: for j ∈ B do
8: ▷ assuming that a (respectively b) is the value encoded by sparse(y⃗, A)

(sparse(y⃗ ′, B))
9: ▷ encode that (a = i ∧ b = j)⇒ zeq

10: D ← fix(sparse(y⃗, A), i) + fix(sparse(y⃗ ′, B), j) + zeq ≥ 1
11: proof_log(rup D)
12: proof_log(pol Cinner D +)
13: Cinner ← Cinner + D

14: proof_log(pol Couter Cinner s +)
15: Couter ← Couter + saturate(Cinner)
16: proof_log(pol Couter s)
17: Couter ← saturate(Couter)
18: return Couter ▷ Couter is now zeq ≥ 1

source

sink

x1 x2 x3 x4 2x5 2x6 2x7 2x8

z11 + z12 z21 + z22 2z32 + 2z34 2z42 + 2z44

z51 + z52 + z53 2z62 + 2z64

∑7

i=1
z7i

z54 2z66 + 2z68

Figure 7 Layout of the arithmetic graph for the generalized totalizer encoding of x1 + x2 + x3 +
x4 + 2x5 + 2x6 + 2x7 + 2x8 ≤ 2. Edges introduced for k-simplification are colored cyan.

constraints on the input variables, however, it is easy to see by an inductive argument829

that the ordering constraints on the variables will be present, when processing the graph830

in topological order: Edges from the source only contain a single variable and hence the831

ordering constraints exist trivially. For inner nodes we get the ordering constraints by832

applying Proposition 6.833

If the set of achievable values E is dense for some node, i.e., E contains all values834

from 0 to max(E), then we can also use Proposition 5 to derive the required preserving835

equality, which only requires O(|E|) instead of O(|A| · |B|) steps and hence can reduce836

the proof logging overhead.837

For each inner node in the graph with incoming edge labels sparse(y⃗, A) and838

sparse(y⃗ ′, B), the (generalized) totalizer encoding contains the clauses839

yi + y ′
j + zi+j ≥ 1 for i ∈ A, j ∈ B (23a)840

ysucc(i,A) + y′
succ(j,B) + zsucc(i+j,E) ≥ 1 for i ∈ A, j ∈ B s.t. i + j (23b)841

842

XX:24 Certified CNF Translations for Pseudo-Boolean Solving

Algorithm 8 Construction of the binary adder network [18].
1: procedure adder_network(b)
2: ▷ input: vector of buckets b

3: for i from 0 to b.size() do
4: while bi.size()≥ 2 do
5: if bi.size()= 2 then
6: x, y ← bi.dequeue()
7: c, s← full_adder(x, y, 0)
8: else
9: x, y, z ← bi.dequeue()

10: c, s← full_adder(x, y, z)
11: bi.enqueue(s)
12: bi+1.enqueue(c)

Algorithm 9 Proof logging the encoding of a single full adder.
1: procedure full_adder(x, y, z)
2: Dgeq

carry, Dleq
carry ← reify(c⇔ x + y + z ≥ 2)

3: Dgeq
sum, Dleq

sum ← reify(s⇔ x + y + z + 2c ≥ 3)
4: Dgeq ← (2 ·Dgeq

carry + Dgeq
sum)/3

5: proof_log(pol Dgeq
carry 2 * Dgeq

sum + 3 d)
6: Dleq ← (2 ·Dleq

carry + Dleq
sum)/3

7: proof_log(pol Dleq
carry 2 * Dleq

sum + 3 d)
8: return D, c, s ▷ D is the preserving equality of the full adder

where succ(i, A) = min({ j | j ∈ A ∪ {∞} , j > i }) and we replace y0, y′
0 with 1, and843

y∞, y′
∞, z∞ with 0 and simplify accordingly. Note that, (23) encodes that a + b = c844

(where a and b are the incoming values and c is the output value), because (23a) encodes845

that if a ≥ i (expressed by assigning yi to 1) and b ≥ j then c ≥ i+ j while (23a) encodes846

that if a ≤ i (which is the same as saying that a < succ(i, A), expressed by assigning847

ysucc(i,A) to 0) and b ≤ j then c ≤ i + j.848

For proof logging the CNF encoding we can simply add all clauses using RUP: A RUP849

check of (23a) will assign yi = y′
j = 1 and zi+j = 0. The ordering constraints on y⃗, y⃗ ′

850

will cause a propagation setting multiple y⃗, y⃗ ′ variables to true such that sparse(y, A) +851

sparse(y′, B) has a value of at least i+j, while the ordering constraints on z⃗ will propagate852

multiple z⃗ to false such that sparse(z, E) can only take a value that is strictly less than853

i+j and hence causes a conflict with the preserving equality sparse(z, E) = sparse(y, A)+854

sparse(y′, B). Similarly, a RUP check of (23b) will assign ysucc(i,A) = y′
succ(j,B) = 0 and855

zsucc(i+j,E) = 1 causing propagations such that sparse(y, A) + sparse(y′, B) takes a value856

less than or equal to i + j and sparse(z, E) takes a value strictly greater than i + j857

causing again a conflict with the preserving equality.858

To enforce a pseudo-Boolean constraint
∑

i aixi ▷◁ k, we first derive a bound on the859

output of the arithmetic graph
∑

i cioi ▷◁ k, using Proposition 4. Then we can derive860

unit clauses on the output via reverse unit propagation.861

To encode
∑

i aixi ≥ k or
∑

i aixi ≤ k the clause zsucc(k−1,E) ≥ 1 or zsucc(k,E) ≥ 1862

is added, respectively. This clause is RUP, as the derived sum
∑

i cioi has a value of863

at most k − 1 or at least k + 1 and thus the constraint
∑

i cioi ≥ k or
∑

i cioi ≤ k is864

falsified, respectively. To encode
∑

i aixi = k both clauses are added.865

S. Gocht, R. Martins, J. Nordström and A. Oertel XX:25

Table 2 Properties of pseudo-Boolean formulas used in the experimental results.

Card PB Card+PB
#Inst. 772 442 308

Card
Avg. # 107.01±252.57 0.00 1,154.43±5,881.78
Avg. #Lits 36.45±47.43 0.00 16.96±26.57
Avg. Coeff. Size 1.00±0.00 0.00 1.00±0.00

PB
Avg. # 0.00 1,020.73±2,294.43 33,379.31±18,3229.66
Avg. #Lits 0.00 24.95±27.60 105.21±109.99
Avg. Coeff. Size 0.00 204.93±1,118.74 10.79±50.42

10−4 10−3 10−2 10−1 100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

102

103

104

timeout

without proof logging

w
it
h
p
ro
o
f
lo
gg
in
g

memout

sequential
totalizer

(a) Cardinality formulas

10−4 10−3 10−2 10−1 100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

102

103

104

timeout

without proof logging

w
it
h
p
ro
of

lo
g
gi
n
g

memout

adder
gte

seq+adder

(b) General pseudo-Boolean formulas

Figure 8 Comparison of runtimes between CNF translation with and without proof logging.

C Additional Evaluation Data866

C.1 Benchmarks867

Table 2 shows some properties of the benchmarks used in the experimental results,868

namely, the average number of cardinality constraints (Card), the average number of869

literals in each constraint, and the average size of coefficients associated with each870

literal. (The same is shown for PB constraints.) Since the benchmark set is composed of871

instances from multiple domains, there is a large dispersion of values between instances.872

For example, the number of cardinality constraints for instances in the Card benchmark873

set ranges from 1 to 2,720. Whereas the number of PB constraints for instances in the874

PB benchmark set ranges from 1 to 18,798. In the Card+PB benchmark set, we have875

an even larger dispersion with instances that have from 1 to 2,378,901 PB constraints876

and from 1 to 75,582 cardinality constraints.877

C.2 Overhead of Proof Logging878

Figure 8 shows the overhead of proof logging when translating the pseudo-Boolean879

formulas to CNF. For the majority of the instances, the overhead is not too significant,880

and formulas with just cardinality constraints can still be translated under 10 seconds,881

while formulas with PB constraints can be translated under 100 seconds. The exception882

XX:26 Certified CNF Translations for Pseudo-Boolean Solving

10−4 10−3 10−2 10−1 100 101 102 103 10410−4

10−3

10−2

10−1

100

101

102

103

104
timeout

solving

ve
rifi

ca
tio

n
memout

sequential
totalizer

(a) Cardinality formulas

10−4 10−3 10−2 10−1 100 101 102 103 10410−4

10−3

10−2

10−1

100

101

102

103

104
timeout

solving

ve
rifi

ca
tio

n

memout

adder
gte

seq+adder

(b) General pseudo-Boolean formulas

Figure 9 Comparison between end-to-end solving and verification time

are the cardinality formulas from vertex cover that require super linear proofs, which883

lead to a higher overhead when storing the proof. Additionally, there were 6 instances884

that had memory outs when storing the proof in memory, which could be improved in885

the future by a more compact representation of the proof logging in VeritasPBLib.886

C.3 Solving and Verification887

Figure 9 shows the relationship between the time to generate the CNF translation and888

solve it using kissat and the time to verify the translation and solution using VeriPB.889

It can be seen that even though we can verify most instances, verification is often890

considerably slower than solving.891

A lot of instances are spread in a wide range of different overheads. This wide range892

only comes from verifying the solution, which is out of the scope of this work. However,893

it motivates potential improvements to VeriPB which are complementary to the work894

proposed in this paper and can further increase the number of verified instances.895

	1 Introduction
	2 Preliminaries
	3 Certified Translation for the Sequential Counter Encoding
	4 General Framework for Certifying CNF Translations
	5 Binary Adder Encoding
	6 Experimental Results
	7 Concluding Remarks
	A Derivations for Building Blocks
	A.1 Deriving the Unary Sum
	A.2 Deriving the Sparse Unary Sum
	A.3 Derivation for binary adder encoding

	B Totalizer and Generalized Totalizer Encoding
	C Additional Evaluation Data
	C.1 Benchmarks
	C.2 Overhead of Proof Logging
	C.3 Solving and Verification

